
www.manaraa.com

Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

1988

A virtual operator technique for enhancement of
computer-to-computer interactivity
Ying-Chan Fred Wu
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Electrical and Electronics Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Wu, Ying-Chan Fred, "A virtual operator technique for enhancement of computer-to-computer interactivity " (1988). Retrospective
Theses and Dissertations. 9745.
https://lib.dr.iastate.edu/rtd/9745

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F9745&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F9745&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F9745&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F9745&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F9745&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F9745&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=lib.dr.iastate.edu%2Frtd%2F9745&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/9745?utm_source=lib.dr.iastate.edu%2Frtd%2F9745&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

INFORMATION TO USERS

The most advanced technology has been used to photo­
graph and reproduce this manuscript from the microfilm
master. UMI films the original text directly from the copy
submitted. Thus, some dissertation copies are in typewriter
face, while others may be from a computer printer.

In the unlikely event that the author did not send UMI a
complete manuscript and there are missing pages, these will
be noted. Also, if unauthorized copyrighted material had to
be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are re­
produced by sectioning the original, beginning at the upper
left-hand comer and continuing from left to right in equal
sections with small overlaps. Each oversize page is available
as one exposure on a standard 35 nmi slide or as a IT x 23"
black and white photographic print for an additional charge.

Photographs included in the original manuscript have been
reproduced xerographically in this copy. 35 mm slides or
6" X 9" black and white photographic prints are available for
any photographs or illustrations appearing in this copy for
an additional charge. Contact UMI directly to order.

•UMI
Accessing the World's Information since 1938

300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA

www.manaraa.com

www.manaraa.com

Order Number 8825466

A virtual operator technique for enhancement of computer-to-computer
interactivity

Wu, Ying-Chan Fred, Ph.D.

Iowa State University, 1988

U M I
300N.ZeebRd.
Ann Aibor, MI 48106

www.manaraa.com

www.manaraa.com

A virtual operator technique for enhancement of

computer-to-computer interactivity

by

Ying-Chan Fred Wu

A Dissertation Submitted to the

Graduate Faculty in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Department: Electrical Engineering and Computer Engineering
Major: Computer Engineering

Approved:

In Charge of M Work

he'^Mà^r Department Fo

For the Gf*aduate College

Iowa State University
Ames, Iowa

1988

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.

www.manaraa.com

ii

TABLE OF CONTENTS
PAGE

INTRODUCTION . 1

REVIEW OF LITERATURE 7
Applications of AI 8

Natural Language Processing 8
Computer Vision 8
Robotics 8
Expert systems 9

Influences of AI on Programming 10
Learning Theories 13

Learning by experiences 13
Learning by being told 14
Learning by discovery 14

FUNDAMENTALS OF THE VIRTUAL OPERATOR APPROACH 16
A New Approach to AI Application 16
AI Strategies for Solving Problems of Computer

Interactivity 18

LEARNING SIMULATION 20
Knowledge Classification 20
Local and Global Service List 22
Over-Generalization 24
Over-Specification .25

STRUCTURE OF THE VIRTUAL OPERATOR 26
User Interface 28
Heuristic Center 28

Database 28
Service number 29
Service description . 29
Command table 29
Command file 29
File name 30

Knowledge base 31
Command sequence suggestion 32
Service complexity 34
Failure count 35
Effective heuristics 35
Status variables and updating rules 36

Transportation Manager 38
Log on procedure 38
Data-flow control 40
End of session 41
Implementation of the transportation manager ... 41

Port switch 41
Transmitter 42

www.manaraa.com

Ill

Receiver 42
Ready-to-transmit signal 43

USER VIEW 44
The Training Phase 44
The Using Phase 51

CONCLUSIONS 56

BIBLIOGRAPHY 62

ACKNOWLEDGEMENTS 66

APPENDIX; BASIC PROGRAM MODULES 67
Structure and Variable Declarations 67
Key Functions in the Heuristic Center 70
Basic Parts in the Transportation Manager 78
User Interface i 81

www.manaraa.com

iv

LIST OF TABLES

PAGE

TABLE 1. Evaluation Function of the suggestion from
system A

www.manaraa.com

V

LIST OF FIGURES

PAGE

FIGURE 1. User's view in accessing a resource 3

FIGURE 2. Transparent computer network 4

FIGURE 3. Problem of system adaptivity 4

FIGURE 4. Remote host terminal emulator 5

FIGURE 5. Command translation software 5

FIGURE 6. Virtual Operator approach 6

FIGURE 7. Process of Knowledge Engineering 9

FIGURE 8. A flow chart for learning simulation 21

FIGURE 9. Structure of the virtual operator 27

FIGURE 10. The command file of a service in WYLBUR ... 30

FIGURE 11. Information of a service in the global
knowledge base 31

FIGURE 12. Local knowledge base before knowledge
transfer 36

FIGURE 13. Local knowledge base after knowledge
transfer 37

FIGURE 14. Updating rules 39

FIGURE 15. A state diagram of the transmitter 43

FIGURE 16. A state diagram of the receiver 43

FIGURE 17. The training phase of VMS 47

FIGURE 18. The training phase of WYLBUR 49

FIGURE 19. The using phase of WYLBUR 52

FIGURE 20. The using phase of Unix 54

www.manaraa.com

1

INTRODUCTION

When a user sits before a terminal, he or she usually

accesses resources as if they were directly connected to the

terminal (Figure 1), even though in fact resources the user

is dealing with may be located far away and physically

connected through multiple levels of transmission (Figure

2). Networking problems illustrated in this latter figure

may have been handled by a computer system, making complex

procedures transparent to the end user. A problem may arise

when a requested resource is in a disjoint system as, for

example, when we wish to retrieve a remote WYLBUR file to a

Unix system. How do we handle such problems as system

adaptivity (Figure 3), to let the user access facilities in

other systems?

One solution is to build a remote host program as a

terminal emulator, setting up a logical link from the remote

system to the user's terminal, letting the user feel as if

he or she were in the environment of the connected remote

system (Figure 4). The remote host solution can address the

problem of reaching a different system, but problems may

still remain, since the user may still need to manipulate a

system different from one with which he is familiar. For an

ideal design, the environmental change should not be

reflected to the user, the remote host solution obviously

not meeting this requirement.

www.manaraa.com

2

In order to make an additional shell to deal with the

problem of intersystem communication, an interpreter may be

used. For each different system connected, such an

interpreter may be installed to translate its commands into

equivalent commands compatible to the destined system

(Figure 5). Using such command translation software is a

traditional way to handle the problem of system

compatibility. Since the translation and service routines

are fixed by the software, it is virtually impossible for a

user to add or update the translation routine. Moreover, in

the case where a new system is to be added, new translation

software will be required.

This suggests the concept of a "Virtual Operator"

(Figure 6), an expert system software implementation based

on Artificial Intelligence (AI) strategies. The research in

this dissertation proposes such a method to enhance

interactivity between systems. Achievement of system

adaptivity to environmental changes is attained by

formulating human-like learning and decision capability in

the knowledge base of the virtual operator.

The virtual operator will connect the terminal to the

requested system, translate the user's commands to

equivalent operations in the connected system, and let a

user with only limited computer background communicate with

www.manaraa.com

3

different systems as desired. Additionally, because of the

knowledge base contained in the virtual operator, it can be

trained by a human expert; experiences during the

communication with different systems can be learned and

accumulated to improve performance in subsequent

communications.

Based on the principles of building an expert system,

decision rules (which control the whole learning and

communication process), and application program modules are

implemented separately, making it relatively easier to

change the software in the virtual operator to accept a new

system or a change in the command set.

In order to verify the methodology of the virtual

operator approach, several systems were chosen for testing,

and the virtual operator now has been trained and is capable

of communicating with NAS9160/WYLBUR, VAX/VMS and VAX/UNIX.

r >

FIGURE 1. User's view in accessing a resource

www.manaraa.com

4

user resource

FIGURE 2. Transparent computer network

system A user resource

system B resource

FIGURE 3. Problem of system adaptivity

www.manaraa.com

5

system A system B

user resource
RH program /

FIGURE 4. Remote host terminal emulator

system A system B

Interpreter

user resource

FIGURE 5, Command translation software

www.manaraa.com

6

VMS UNIX

Virtual
Operator

WYLBUR user

FIGURE 6. Virtual Operator approach

www.manaraa.com

7

REVIEW OF LITERATURE

Over the past two decades, computer systems have been

developed to simulate human activities, much of this

activity being associated with the term Artificial

Intelligence (AI) (Nilsson, 1980).

Since the middle of the 1970s, AI researchers have

often turned to the limited field of specified problems

instead of using a more general approach, usually because AI

programming is much more difficult than more conventional

programming in many aspects. The process of developing an

AI program is relatively complicated because the program

logic must not only describe a mathematical routine or

routines as in conventional programs, but must also attempt

to represent human intelligence factors such as reasoning

and learning. Any such human quality, no matter how natural

it may seem to us, is of course very difficult to formulate

into logic understandable by a machine.

AI research, though complex, has been and is widely

continued due to its acknowledged promise. In this chapter,

the general progress of AI research and some fundamental

concepts and theories are reviewed.

www.manaraa.com

8

Applications of AI

Artificial Intelligence techiques have been applied in

many different areas. Basically, those applications fall

into the categories of Natural Language Processing, Computer

Vision, Robotics, and Expert Systems (Gevarter, 1985),

Natural Language Processing

The goal of AI research in Natural Language Processing

is to develop methods to interact with computers in natural

language, which includes both language understanding and

generation.

Computer Vision

Computer Vision is concerned with enabling a computer

to identify what it sees, or to locate what it is looking

for.

Robotics

Robotics is the field concerned with the intelligent

connection of perception to action. The sensing includes

vision, force and tactile sensing, and the sensing of the

robot's internal state. The action is usually provided by

mechanical arms, wheels or legs.

www.manaraa.com

9

Expert systems

The concept of the expert system arose in the 1970s

when AI researchers turned to the solution of narrowly

focused real-world problems (Forsyth, 1986), Expert systems

are capable of generating advice or making decisions in

narrow subject areas, solving problems that usually require

human expertise.

An expert system contains an Inference Engine, (which

implements search and reasoning methods to find solutions),

and a Knowledge Base, which stores the system's expertise

(Forsyth, 1984). The process of building an expert system

(often called Knowledge Engineering) involves interactions

between the knowledge engineer and a human expert (Figure

7).

questions
, problems

9 heuristics
(rules of thumb)

Human
expert

Knowledge
Engineer

Expert
System

answers,
solutions

J

FIGURE 7. Process of Knowledge Engineering

www.manaraa.com

10

Influences of AI on Programming

AI strategy strongly affects conventional programming.

In this section, the influences and the progress of AI

research are introduced by briefly characterizing several

stages of programming methodology.

Stage 1: Conventional programming — Do what I tell

you to do.

Work is done by executing instructions one by one, each

execution step being well defined in the program.

Stage 2: Heuristic reasoning — Do according to the

principles I gave you.

As AI techniques have been developed, AI programming

has been used as a tool to support these new techniques,

which are quite different from those based on Pascal-like

programming. A program may be once again composed of

instructions which explicitly determine the execution steps,

but it is constructed by logically-defined induction rules

and recursively applied to some known events to generate

execution processes (Ramamoorthy, 1987).

www.manaraa.com

11

This way to solve a problem is thus quite different;

conventionally, we need a well-defined solution path,

whereas now we only define the searching principles and let

the machine generate the most reasonable solution path.

This change in approach to problem solving makes it possible

to produce a kind of machine reasoning by formulating human­

like intelligence in logic.

Stage 3; Machine learning — Improve yourself by

experience.

Expert systems in their first stages can do jobs

according to heuristics abstracted from human knowledge, but

they will never improve because performance is not affected

by experience, which is of course very unlike human behavior

(Simon, 1983).

Theories of machine learning have been investigated for

a long time, even before the invention of computers, but

there was no efficient machine to fulfill the experiments at

those times. With the improvement of computers, these

theories have been reconsidered and used to develop expert

systems, and new theories have also been developed through

efforts of both mathematicians and psychologists.

www.manaraa.com

12

It is the characteristic of expert systems in the

second stage of development, that the machine can learn to

improve itself, working better and better, and will avoid

making a mistake twice. More details about learning

theories are discussed in the next section.

Stage 4: Creative machine — Create something I never

thought.

To let a computer generate ideas that no one has ever

thought of is the dream often fully exaggerated in

scientific fiction. Expert systems in the second stage,

though they may have learning ability, can not still deal

with the situation when a solution is beyond the knowledge

currently possessed. This is due to the fact that any

derived rules are implied in the original rules, i.e.,

nothing "new" is created through the process of logic

induction. It is obviously much more difficult to produce a

machine which creates rather than learns; however, a few

successful experiments featuring creative machines have been

announced (Ritchie and Hanna, 1984). Research in this area

is still very limited, basically because it is too difficult

to find a model that can simulate such sophisticated

phenomena in human behavior. Moreover, we do not understand

www.manaraa.com

13

fully enough the way in which the brain can think and invent

to enable us to duplicate these functions.

Learning Theories

Most learning theories were initiated by psychological

analysis of human behavior, formulated in mathematics, and

then accomplished through computer simulations. Basically,

they could be classified into three categories: learning by

experiences, learning by being told, and learning by

discovery.

Learning bv experiences

A classified set of examples is provided to train the

system, and the system develops its discrimination rules to

do further classification jobs. The results after each

decision are fed back as positive or negative instances to

modify the discrimination rules. Many existing learning

machines are based on this kind of methodology. One of the

earliest systems, and still one of the best known, was the

Perceptron (Rosenblatt, 1962). Training examples are

represented by feature vectors, while discrimination rules

are represented by a linear function composed of

coefficients followed by feature variables. The learning

process actually is a periodic sequence of parameter

adjustment (Minsky and Papert, 1969), using mathematical

optimization theory.

www.manaraa.com

14

In some other learning theories, discrimination rules

are represented in logic, which makes the rules developed

more understandable. Training sets are also represented by

a special description language, which makes the expression

more comprehensive than that of using feature vectors.

Learning by being told

Learning by being told is the most straightforward

method of learning. It provides a method to enable computer

systems to acquire information from human experts

representing knowledge in a specified domain.

The learning process proceeds in a question and answer

manner (Grishman and Hirschman, 1978), and the system must

keep track of interactive dialogue and know whether

information is new or previously obtained in order to

generate appropriate questions in the next question-answer

iteration. Moreover, it must be able to remove incorrect

information either according to instructions from users or

through auto detection and correction mechanisms.

Learning bv discovery

When scientists began attempts to make machines which

not only reasoned and learned but also created, a new

approach appeared. The knowledge formulated in a machine

depends not only on training examples, but also on the

www.manaraa.com

15

mutation/combination of existing knowledge. The BEAGLE

(Forsyth, 1981) was a pioneer in this approach in which the

heuristic evolutionary rule breeder is derived from a

genetic algorithm (Holland, 1975).

Eurisko (Lenat, 1982) is a pure discovery program, the

learning process in which is absolutely by discovery and not

by examples. It made a discovery, previously not conceived,

for a new design of a NAND/OR gate, subsequently proven to

be successful in manufacturing.

www.manaraa.com

16

FUNDAMENTALS OF THE VIRTUAL OPERATOR APPROACH

In this chapter, a comparison with previous AI research

is made to describe the fundamental differences and problems

in the described research. Then the criteria for developing

the virtual operator are presented.

A New Approach to AI Application

The virtual operator, motivated by the practical need

for improved computer interactivity between different

systems, is research that challenges the acknowledged

limitation of using AI. Two characteristics of this

research, in which AI techniques are applied in the area

seemingly in violation of the principles of using AI and

also with increased implementation difficulty, describe the

major differences from other AI applications.

1. Command translation is almost a one-to-one mapping

process.

In order for a system to communicate with another

system, it is required to translate conunands passed between

systems. Since any given system's commands are all well

formatted, the translation is usually almost unique, i.e.,

the translation is or close to a one-to-one mapping process.

www.manaraa.com

17

In general AI research, AI techniques are basically

applied to areas with a high uncertainty of solution, and

the goal is to obtain a suggestion or indication which may

lead to the most appropriate solution. In the case at hand,

in contrast to general AI applications, instead of finding a

better or best solution, finding a successful one is the

goal. For example, the task of copying a file from A to B

is translated to a VMS command as "COPY A B" and, even

though another alternative such as "COPY A C, COPY C B"

exists, we are not much interested in finding the better

translation or the number of possible translations, as long

as a valid one is found.

2. Accumulated experiences may not be useful.

Almost all AI research efforts are based on the

assumption that intelligence is a result of knowledge

accumulation. The AI chess player, for example, will

memorize each new scheme or strategy from its opponent and

therefore, through practicing, will improve and perhaps

eventually become an expert.

Many computer systems are quite different from one

another in their instruction set, and thus accumulated

knowledge in translating commands for a given system may be

www.manaraa.com

18

almost useless in translating commands for another system.

For example, knowing about a command such as "COPY A B" in

VMS does not help to understand that the same command is "cp

A B" in Unix. By analogy, an expert in chess may not be

more proficient in learning poker than a person without any

experience, since the playing schemes are too different.

Knowledge accumulated thus may have no direct benefits if

the new system is too different from the one in experience.

Unfortunately, this is very often the case.

AI Strategies for Solving Problems of Computer Interactivity

Applying the above facts to the problem of computer

interactivity, we come up with the conclusion:

It is not appropriate to apply AI techniques to a
command translation process in which no rules can
be actually induced and used in another
translation process.

This is a reluctant conclusion after a long search

including both from theoretical and experimental approaches,

but the work has not necessarily been in vain because the

characteristics of intrinsic problems hidden in the realm of

computer interactivity has been generally explored and

better understood, making it possible to better apply AI

strategy at a crucial point where this approach can

effectively enhance computer-to-computer interactivity.

www.manaraa.com

19

Strategic Principle 1:

Use the " Learning by Being Told " strategy in

collecting commands of a new system.

For a new system, the best way to improve the knowledge

base of the virtual operator is let a human expert tell

whatever he knows about using the system, the virtual

operator recording all the command sets.

Strategic Principle 2:

Use AI heuristic rules in the task analysis and

command classification process, and help the virtual

operator to accept a new system by inheriting and

modifying previous experiences.

Experiences in translating commands cannot be

exhaustively formulated due to the great variety of commands

in different systems, but the experiences in classifying

commands and relating them to a certain task can be

formulated as heuristic rules to help the virtual operator

to compose possible command sequences to provide the same

service in a new system.

www.manaraa.com

20

LEARNING SIMULATION

It is found by observing human behavior in dealing with

new knowledge that background knowledge in experience is

first assumed valid for the new environment, a process known

as knowledge generalization. Exceptions may occur when the

generalized knowledge is applied and found inappropriate, at

which time specifications will be added to modify background

knowledge in order to adapt to the new environment, a

process known as knowledge specification (Lenat, 1982).

Generally, knowledge integration is a combined effect of

knowledge generalization and specification. Results of

applying fundamental rules to a new domain will be fed back

and used to refine previously existing knowledge; positive

results cause the further generalization of the applied

rules, whereas negative results make the rule more tightly

specified. Figure 8 shows the flow chart for learning

simulation. •

Knowledge Classification

Two kinds of knowledge are required for the virtual

operator to do the job as a self-improvement human operator.

First is the knowledge of commands for providing services,

including command syntax, argument description, or command

sequence if the service is not a one-step service. This

www.manaraa.com

21

no
ver Generalization ?

yes

yes no

End

iver Specification ?

Knowledge Specification

Knowledge Generalization

FIGURE 8. A flow chart for learning simulation

kind of knowledge is obtained through the process of

learning by being told and saved in the form of command

tables to provide a base of different system languages for

communicating with different systems.

The second type of knowledge is a foundation of

reasoning ability for giving suggestions for action when a

requested service has not yet been implemented. This kind

of knowledge, including complexity, possible command

sequences, and the implementation status of a service, is

www.manaraa.com

22

represented by frame-like tables, which are continually

updated and modified under the control of embedded heuristic

rules. In terms of generality, this type of knowledge is

further classified into two levels: global knowledge,

general information among systems to characterize their

"commonness", and local knowledge, special characteristics

within a system to characterize its distinct differences.

The virtual operator will continually evaluate each of the

rules to adjust its generality, and will transfer knowledge

between global and local knowledge bases by knowledge

generalization and specification.

To communicate with a new system, the virtual operator

will first use global knowledge and knowledge

generalization, assuming that the knowledge is also valid

for this system. The inherited knowledge will then be tried

in the new system, and be rejected, accepted or modified

through the process of knowledge specification.

Local and Global Service List

Generally-used utilities are commonly supported by

different systems, but almost every system also has its own

special utilities, representing features different from

those of other systems. A single service list can only

represent the commonness and not the distinctions of system

www.manaraa.com

23

characteristics, and therefore it is not a good knowledge

representation for system characteristics. The suggested

representation is a combination of two service lists

consisting of a common service list, copied from the global

knowledge base, appended to a special service list, saved

locally in the local knowledge base. The common service

list maintained in the global knowledge base (called

hereafter the global service list) keeps collecting general

services existing in some other systems, and supporting the

information base of possible services to the system under

training. The special service list contains special

utilities unique to each other system, presenting the

special features of each such system. The service list for

a particular system (called hereafter the local service

list) is based on this kind of combination.

Users can keep adding new services to the local service

list, and unless the new service is specified "unique", it

will be considered as a possible service for some other

systems. It will then be added to the global service list

in the global knowledge base, to be broadcast and appended

to every other system's local service list, which the

virtual operator uses to generate questions to get

corresponding commands.

www.manaraa.com

24

Over-Generalizat ion

Over-generalization is the situation in which a

generalized assumption is not true for a new environment.

Considering the knowledge generalization process of the

virtual operator, some service names in the local service

list are inherited from the global knowledge base, which is

based on the assumption that those services already present

in some other systems are also available in the new system

under training. Whenever this assumption is found invalid,

over-generalization has occurred.

Messages transferred from the global knowledge base

include service names and related statistical analyses for

implementing those services. Whenever a training phase is

initiated, the virtual operator will ask for command

information to implement the service, while in the meantime

suggestions based on statistical results will be generated

to help the user. If the number of unsuccessful tries

exceeds a pre-defined threshold, the virtual operator will

treat this case as an over-generalization error and remove

the service name from the local service list.

www.manaraa.com

25

Over-Specification

Over-specification is the situation in which a rule

could be used more generally than it is actually used.

Over-specification will not cause an error as the case of

over generalization, however, it reduces the power of using

rules in organizing and simplifying knowledge construction.

A user can specify the knowledge of a service as

"unique" to prohibit knowledge generalization and block the

message transfer to the global knowledge base, which is a

way to render a system distinct from others, but it may

happen that a service specified as "unique" is in fact

potentially applicable to another system. The virtual

operator will also check these special services, and

whenever they are also found to be applicable to another

system, the operator will remove the restriction and

transfer the information to the global knowledge base and

then broadcast it to other systems.

The local service list is thus maintained for each

system, and is expanded by adding new services either from

human experts or by automatic knowledge inheritance from the

global service list in the global knowledge base. In the

other aspect, reducing by knowledge specification, the

service name is removed whenever an over-generalization

error is detected.

www.manaraa.com

26

STRUCTURE OF THE VIRTUAL OPERATOR

Nov that the general methodology of implementing a

virtual operator has been described, we will take a closer

look at the interior organization of the operator.

The basic elements of the virtual operator are the user

interface, the heuristic center, and the transportation

manager. They are described in the following sections and

illustrated in the block diagram as in Figure 9.

The virtual operator has two operation modes, the

training mode and the using mode. In the training mode, the

virtual operator acts as a student and treats the user as a

teacher. The user in this case should be a human expert

able to teach the virtual operator to communicate with a

particular system. In this mode, knowledge from the user is

collected in the heuristic center and the transportation

manager is disabled since no communication service is made.

In the using mode, the virtual operator acts as both a

real operator and as an interpreter? commands and

communication principles kept in the heuristic center are

used by the transportation manager to perform a specified

task.

www.manaraa.com

27

User

service request
(using phase)/
Input command
Information
(training phase)

^^ response from system/
request for specification

User Interface

load KB & DB
for specified
system

request for
specification

response from
system

Heuristic Center

Global Knowledge Base (GKB)

Local KB (LKB)

Data Base (OB)

System AO
Command/
Command
sequence

Port Switch

start

1 1nk-set-up

System A1

destination
Information

Transportation Manager

Buffer

T
Transmitter

Response table

I -
Recel ver

ready

sendlng
command

receiving
1 nformat1 on

TO DESTINATED SYSTEMS

FIGURE 9. Structure of the virtual operator

www.manaraa.com

28

User Interface

The user interface is a bridge between the user and the

interior of the virtual operator. It makes the work of the

operator transparent to the user, and the user therefore

detects no variation when communicating with different

systems.

The user interface is implemented as a user application

program, written in Unix Shell commands, in which a service

table is displayed to help the user in specifying an object

system and selecting operation modes.

Heuristic Center

The Heuristic Center is the "brain" of the virtual

operator, containing both a database and a knowledge base.

The database is the place where command knowledge is stored,

and it is basically composed of structured command tables.

The knowledge base is somewhat more complicated. Although

it is still a hierarchy of files as in the database, the

information saved is compiled knowledge, instead of raw data

or information.

Database

Commands and related information that support the

virtual operator with versatile communication languages are

www.manaraa.com

29

saved in the database. A directory is assigned for each

system, and all the information related to that system is

kept under the specified directory. This information

includes service numbers, a local service list, a command

table, a number of command files, and a file name list.

Service number Whenever a new service is added to

the global knowledge base, a service identification number

is assigned to it. These numbers are kept in a sequential

file corresponding to the local service list.

Service description Descriptions of the services in

the system, both implemented and incomplete, are kept in a

sequential file as a local service list.

Command table A table of commands is saved in a

file in which all commands currently known to the virtual

operator are listed. Any added command can be checked by

scanning the command table to determine whether it is a new

command or not.

Command file Command files are structured as frame­

like tables, like the one shown in Figure 10, each with six

formatted fields, in which the file name, the description of

the service, the description of the arguments, the number of

steps, and the command syntax are stored. The number of

steps indicates the complexity of the service; if it is a

single step service, the number of steps is one; if it is

www.manaraa.com

30

not, the number of commands required to complete the service

is recorded, and a command sequence instead of a command

will be saved in the field of the command syntax.

Description of a service : Receive a file from Unix.
Number of arguments : 2
Description of argument 1: SOURCE
Description of argument 2; DESTINATION
Number of steps : 3
Command syntax 1 : source %1
Command syntax 2 : collect
Command syntax 3 : save %2

FIGURE 10. The command file of a service in WYLBUR

File name The file name is the path name used to

access a particular command file. These are also kept in a

sequential file as a table of entries to unit of each

utility information.

The file name of a single step service is made up of

the first two characters of the command, appended to the

corresponding service number. The file name of a multi-step

service is just the sequence of service numbers that

correspond to the sequence of commands required during the

service.

www.manaraa.com

31

Knowledge base

Except for the global knowledge base, saved in the home

directory, all the local knowledge baëes are saved locally

under the specified directories along with their command

files. The knowledge base still has a frame-like structure,

as shown in Figure 11, and the frame for each service is

divided into six fields respectively containing the service

number, the description of the service, the number of

systems in which the service has been implemented in one

step, the number of systems in which the service has been

implemented in more than one step, the number of heuristic

rules, and contents of heuristics.

Service number ; 12
Description of service : Receive a file from Unix.
Single command (number of systems) : 0
Multi commands (number of systems) : 2
Number of heuristic rules : 1
Heuristic ID s 0
Weight : 2
Command sequence : 9-10-3

FIGURE 11. Information of a service in the global knowledge
base

The local knowledge base is essentially a partial

projection of the global knowledge base, containing only

information relative to incomplete services. Another region

in the local knowledge base contains information about those

www.manaraa.com

32

special services which are unknown to the global knowledge

base, representing unique features of a particular system.

Several elements of miscellaneous information are maintained

locally in the local knowledge base, e.g., a counter in

which the number of failures to implement a service is

recorded, and three implementation status variables,

indicating whether the service is new, completed, or

changed. Details of those functions are described in the

following sections.

Command sequence suggestion Any successful command

sequence used in performing a certain service will be

recorded and used as a suggestion to implement the same

service in another system. Accumulated experiences may

produce more than one suggestion for a particular service,

and the operator will keep updating the weight of each

suggestion based on the evaluation function.

Suggestions will prompt the user in the order of

calculated weights. The one with the biggest weight is

considered to be the best suggestion by the virtual

operator, and is always sent to the user first. The weight

of a suggestion is determined by evaluation functions, which

are defined and can be varied by the knowledge engineer (the

one implementing the virtual operator) according to the

heuristic information available. The number of successes.

www.manaraa.com

33

for example, can be used to define such an evaluation

function. By setting the weight of a suggested command

sequence equal to the number of successes in using the

sequence to perform a service, the suggestion with the most

successful experiences is established as the best one.

The number of failures can also be used as heuristic

information to determine the evaluation function. By

setting the weight equal to the negative of the number of

failures, the suggestion with the least failures is

established as the best one.

The "most success" and the "least failure" methods are

the simplest evaluations, but they both suffer from the

vague definition of success; neither of them necessarily

presents the true probability of success. A more reasonable

evaluation would calculate the probability of success by

setting the weight equal to the percentage of success with

respect to the number of total tries.

When a new system under training is in the same

manufacturer's series as a previously experienced system,

and when the two have a strong resemblance to one another,

evaluation functions based on statistical results may lead

in a wrong direction. For this special case, we should

ignore the statistical results and take the suggestion

directly from the experiences of the similar system. Taking

www.manaraa.com

34

the resemblance factor into consideration, the suggested

evaluation function for a suggestion drawn from

communication experiences with system A is:

a*(number of success)/(number of total tries) +
b*l/((ID of system A - ID of the system under
training)+l)

where a,b are adjustable coefficients to control the weight

of each factor. Numeric difference between system IDs will

be chosen to represent the resemblance between systems. A

summary of the evaluation functions is given in Table 1.

TABLE 1. Evaluation Function of the suggestion from system
A

HEURISTIC INFORMATION EVALUATION FUNCTION

Most success fQ= Number of successes

Least failure f^® - (Number of failures)

Probability of success f2= No. of successes/Total Tries®

Resemblance f3= l/XllDg-ID^rainingl+l)

Combined^ f^= a*f2 + b*f3

^Total tries is the sum of the number of successes and
the number of failures.

^Adjustable variables a and b.

Service complexitv For each service, the number of

systems that have completed the service in a single step and

www.manaraa.com

35

the number of systems that have completed the service in

more than one step are recorded in the knowledge base. This

information will help the user to decide whether or not to

accept a suggestion of trying a command sequence in order to

accomplish the service. For instance, if the statistical

record shows that the service is 90% likely to be a single

command service, the user had better try to find the

particular command instead of trying any other suggested

command sequences.

Failure count To prevent the over-generalization

error mentioned previously, a counter for each incomplete

service is used to accumulate the number of failures in

obtaining command information. A default threshold can be

set, and whenever the number of failures exceeds this value,

the virtual operator will consider it as an over-

generalization case and stop further inquiry by removing the

service name from the local service list.

Effective heuristics To prevent the virtual

operator from making any given mistake twice, any heuristic

tried and failed shall not be used again. The virtual

operator will keep information about use of a heuristic in

the local knowledge base to determine whether the heuristic

is still considered effective or not.

www.manaraa.com

36

Status variables and updating rules Three

implementation status variables for each system are saved

along with its local knowledge base. A status variable is

composed of an array of sixteen bit integers and manipulated

under the bit operation supported in C language, each bit

indicating the current status of a corresponding service

(the nth bit corresponding to the service with a service

number n). For example, the least significant bit indicates

the status of the service with a service number zero.

The first status variable "New", indicates a service in

the global knowledge base which is new to the system under

training. A bit in this variable is set when there is a new

service added into the global knowledge base and reset after

the corresponding information of this new service is copied

to the local knowledge base. Figure 12 and Figure 13 show

the condition before and after knowledge transfer.

Status variable "New": 0000000000000001

Local knowledge base : Empty

FIGURE 12. Local knowledge base before knowledge transfer

The second status variable, "Complete", indicates which

service in the global knowledge base has been implemented in

www.manaraa.com

37

Status variable "New": 0000000000000000

Local Knowledge base :

Service number : 0
Description of a service : Display the file names.
Single command : 2
Multi commands : 0
Number of heuristic rules : 0

FIGURE 13. Local knowledge base after knowledge transfer

the system under training. A bit in this variable,

initially reset, will be set when the corresponding service

is implemented and available for the using phase.

The third status variable, "Change", indicates which

service information in the global knowledge base has been

changed. A bit in this variable will be set when a change

in the statistical results of the corresponding service is

detected in the global knowledge base, and is reset when the

updated information is copied to the local knowledge base.

At the beginning of each training phase, for those

services with a corresponding bit set in the variable "New",

the virtual operator appends all information, including the

service number and descriptions, from the global knowledge

base to its local knowledge base. For those services with a

corresponding bit set in the variable "Change" but a bit

reset in the variable "Complete", the virtual operator

www.manaraa.com

38

replaces the statistical information in the local knowledge

base with the latest information from the global knowledge

base. The updating rules described are shown in Figure 14.

Transportation Manager

The actual communication work, such as link set-up and

data-flow control, is done by the transportation manager of

the virtual operator. The transportation manager knows

nothing about commands but is familiar with different

transportation protocols of different systems. Basic parts

contained in the transportation manager are the transmitter,

the receiver and the port switch.

Log on procedure

In the using phase, whenever a service is requested,

the transportation manager starts communication by

initiating the log on procedure to the requested system.

The port switch first connects the user's terminal to the

system by assigning the user a logical channel which is a

link port to the requested system. Then the transmitter

sends log on information to the connected system and waits

to be identified. In the meantime, the receiver is also

activated by the transportation manager; it monitors the

response from the connected system. There is a small

database built into the receiver to keep some key words,

www.manaraa.com

39

Ri; System that is currently under training,
R: Systems that are not under training.

Initialization:
IF a bit in the status variable "New" is set,

(i.e., a service that is new in Ri.)
THEN
1. Add the service name to the local service list.
2. Add the characteristic information of the service

to the local knowledge base.
3. Reset the bit in "New" of Ri.
4. Reset the bit in "Change" of Ri.
5. Reset the bit in "Complete" of Ri.

ELSE IF a bit in the status variable "Change" is set
but is not set in the "Complete",
(i.e., the information of an incomplete service

has been changed.)
THEN
1. Replace the characteristic information of the service

in the local knowledge base with the updated
information in the global knowledge base.

2. Reset the bit in the status variable "Change" of Ri.

End of the training phase:
IF a new service has been added AND

it is not specified as a unique service.
THEN
1. Add the information of the service to the global

knowledge base.
2. Set the bit in the status variable "Complete" of Ri.
3. Set the bit in the status variable "New" of R.

ELSE IF an original incomplete service is completed.
THEN
1. Update the information in the global knowledge base.
2. Remove the information of this service from the local

knowledge base.
3. Set the bit in the status variable "Complete" of Ri.
4. Set the bit in the status variable "Change" of R.

FIGURE 14. Updating rules

www.manaraa.com

40

such as the system prompt and error messages generated by

the system for indicating status. The receiver can

therefore understand the meaning of received messages and

take further action.

The log on procedure generally is terminated by receipt

of the system prompt, which indicates that the user has been

logged onto the system and the system is ready for accepting

commands from the user. A signal will be sent to the

transmitter by the receiver to indicate this situation.

Data-flow control

There is a command buffer built into the transmitter to

hold the command or the command sequence to be sent.

Actually, before the transportation manager initiates a log

on procedure, the heuristic center would have prepared the

command or the command sequence (according to the requested

service) and transferred it to the command buffer. When the

log on procedure is completed, the transmitter receives a

signal from the receiver and starts to send the command.

In most cases, the receiver is scanning the response

and waiting for the system prompt, which is the indication

for sending the next command or data element. Whenever this

indication is detected by the receiver, a ready-for-transmit

signal is sent to the transmitter. The communication is

processed under this kind of data flow control, and data

www.manaraa.com

41

transmission is thus always continued at the most efficient

rate without allowing any data to be missed.

End of session

After the requested service is completed, the

transportation manager will initiate the log out procedure

to disconnect the logical link. The service list is

displayed again and the user can choose another service or

exit the using phase.

Implementation of the transportation manager

The transportation manager is implemented by fully

utilizing the characteristics of the Unix operating system

and its versatile system calls. Any system physically

connected to Unix is considered as a special device and can

be accessed just like any ordinary file. The transmitter

and receiver are two concurrent processes written in C

language and using Unix system calls. Interprocess

communication is implemented through a "pipe", via which the

receiver sends the ready-t'o-transmit signal to the

transmitter.

Port switch Any system connected to Unix is

assigned a special device name as the logical path to its

access. In the using phase, the virtual operator will first

ask the user to specify the system to which he wants to

www.manaraa.com

42

connect, then display the available services to the user.

With a specified system name, the virtual operator finds the

corresponding logical name and commands the port switch to

set up the link.

The channel lock mechanism is based on a semaphore

technique. Before a particular channel is assigned to a

user, a semaphore is checked to see whether the channel has

been occupied or not. If it has been occupied, another

channel will be checked. Otherwise, the destined system is

connected through this channel, and the semaphore is set to

prevent any other user from interrupting during the

conversation.

Transmitter The transmitter is implemented as a

process in which data or commands prepared in the command

buffer are written to the destined system. The transmitter

process does not analyze the response from the connected

system, but it generates a concurrent child process, the

receiver, for this purpose. A state diagram of the

transmitter is in Figure 15.

Receiver The child process of the transmitter, the

receiver, keeps collecting messages from the connected

system. By interpreting key words saved in its database, it

is capable of determining the status of the system and

informing the transmitter as to what is going on. A state

diagram of the receiver is in Figure 16.

www.manaraa.com

43

Ready-to-transmit signal The interprocess

communication relies on a one way pipe (produced by a Unix

system call) from the receiver to the transmitter. A

special character is used as the ready-to-transmit signal

and sent through the pipe, and the transmitter process will

not send the next command or data element until the ready-

to-transmit signal is received from the pipe.

NOT FINISH NOT READY

FINISH READT

Send command

Disconnect link

Link connected

Wait for READY

Send DISC to receiver

FIGURE 15. A state diagram of the transmitter

ERROR
NOTOK

OK

Send error
message

Wait for
response

Send READY

DISC

Disconnect
link

FIGURE 16. A state diagram of the receiver

www.manaraa.com

44

USER VIEW

The virtual operator has two operation phases from the

user's point of view. One is the training phase, in which

the operator learns and accepts new communication knowledge

from users; the other is the using phase, in which the

operator serves users as a human operator, setting up the

logical link, and translating and sending the user's

commands to the requested system.

The Training Phase

The training phase is initiated by special users, such

as human experts, for improving the knowledge base of the

virtual operator.

During the training phase, the virtual operator acts as

a student, and treats the user as a teacher. It is built to

be both a good questioner and analyst, and thus all the user

needs to do is to answer questions by typing the command

syntax and related information, not worrying about how the

operator is collecting knowledge. The operator will use its

own internal knowledge representation to organize the

received information and abstract the raw information into

heuristic rules.

The following is a sample of dialog to illustrate the

process of knowledge integration in two iterations of the

www.manaraa.com

45

training phase. In the first iteration, shown in Figure 17,

VMS was chosen as the object system with which to teach the

virtual operator to communicate. Since the knowledge base

is empty at this point, the virtual operator can do nothing

but ask the user to input service information such as the

description of a service and its arguments, the number of

arguments, the command syntax, the command sequence, and the

generality of the service. In the second iteration, shown

in Figure 18^ WYLBUR was chosen as the object system to

learn. Since the virtual operator has now been trained to

communicate with VMS, all the accumulated experiences may be

used to generate heuristic suggestions to help the user. It

can be seen in the beginning of the second training

iteration, by comparison with the first iteration, that the

virtual operator knows that there could be a service which

displays file names, and the probability that this service

could be implemented in a single WYLBUR command is one.

These suggestions are based on the previous experience in

communicating with VMS; the idea of displaying file names,

originally unknown to the virtual operator, is implemented

by a single command in VMS, therefore it suggests the user

that he may also implement this service in WYLBUR, and the

probability to find a single command to achieve this is one,

because so far the virtual operator has never met the case

www.manaraa.com

46

that a system needs more than one step to accomplish this

service.

How to receive a file from Unix, as in the second

example, is learned by the virtual operator in the first

training phase with VMS. The virtual operator displays the

most reliable command sequence (actually the only sequence

it has learned so far) to implement this service in the

training phase of WYLBUR, and waits for the user to make a

decision as to whether to take the suggestion or not.

During the training phase, the virtual operator will always

be a student; it will generate questions or suggestions but

will never make the final decision for the user, except when

he gives up the opportunity.

One of the questions generated by the virtual operator

in the training phase is about the generality of a service.

Whenever a new service is defined by the user, he is

responsible for telling the virtual operator whether he

thinks this service is also available in another system or

not. If his answer is yes, the related information, learned

in implementing this service will be applied to some other

training phases with other systems; otherwise, those

experiences will be marked as special techniques and only

kept in the local knowledge base for the particular system

as one of its special features.

www.manaraa.com

47

1: Wylbur
2: Vms
3: Unix
4: EXIT
INPUT SYSTEM ID>
2

1: Training Mode
2; Using Mode
3: EXIT
INPUT MODE NUMBER>
1

**

ADD NEW COMMANDS (y/n)? y

ONE STEP COMMAND (y/n)? y
INPUT THE SYNTAX, USING %1, %2.. AS ARGUMENTS >dir

INPUT THE DESCRIPTION OF THIS COMMAND
>Display file names.

IS THIS COMMAND ONLY SUPPORTED IN THIS SYSTEM? (y/n)>n
INPUT THE NUMBER OF ARGUMENTS >0

**

ADD NEW COMMANDS (y/n)? y

ONE STEP COMMAND (y/n)? y
INPUT THE SYNTAX, USING %1, %2.. AS ARGUMENTS >e

INPUT THE DESCRIPTION OF THIS COMMAND
>Save a file.

IS THIS COMMAND ONLY SUPPORTED IN THIS SYSTEM? (y/n)>n
INPUT THE NUMBER OF ARGUMENTS >0

**

ADD NEW COMMANDS (y/n)? y

ONE STEP COMMAND (y/n)? y
INPUT THE SYNTAX, USING %1, %2.. AS ARGUMENTS >source %1

INPUT THE DESCRIPTION OF THIS COMMAND

FIGURE 17. The training phase of VMS

www.manaraa.com

48

>Built in command for specifying source file during file
transportation.

IS THIS COMMAND ONLY SUPPORTED IN THIS SYSTEM? (y/n)>n
INPUT THE NUMBER OF ARGUMENTS >1
INPUT THE DESCRIPTION OF ARGUMENT 1 >SOURCE

**

ADD NEW COMMANDS (y/n)? y

ONE STEP COMMAND (y/n)? y
INPUT THE SYNTAX, USING %1, %2.. AS ARGUMENTS >SOS %1

INPUT THE DESCRIPTION OF THIS COMMAND
>Create a file.

IS THIS COMMAND ONLY SUPPORTED IN THIS SYSTEM? (y/n)>n
INPUT THE NUMBER OF ARGUMENTS >1
INPUT THE DESCRIPTION OF ARGUMENT 1 >FILE NAME

**

ADD NEW COMMANDS (y/n)? y

ONE STEP COMMAND (y/n)? n

INPUT THE DESCRIPTION OF THIS FUNCTION
>Receive a file from the Unix system.
INPUT THE SYNTAX, USING %1, %2.. AS ARGUMENTS >source %1

FINISHED (y/n)?>n
INPUT THE SYNTAX, USING %1, %2.. AS ARGUMENTS >SOS %2

FINISHED (y/n)?>n
INPUT THE SYNTAX, USING %1, %2.. AS ARGUMENTS >e

FINISHED (y/n)?>y

TASK DESCRIPTION; Receive a file from the Unix system,
COMMAND SEQUENCE
source %1
SOS %2
e
INPUT THE NUMBER OF ARGUMENTS>2
INPUT THE DESCRIPTION OF ARGUMENT 1>S0URCE
INPUT THE DESCRIPTION OF ARGUMENT 2>DESTINATI0N

FIGURE 17. (continued)

www.manaraa.com

49

1: Wylbur
2î Vms
3: Unix
4: EXIT
INPUT SYSTEM ID>
1

1: Training Mode
2: Using Mode
3; EXIT
INPUT MODE NUMBER>
1

**

Display file names.

THE PROBABILITY IS 1.000000 FOR A SINGLE STEP SERVICE
ONE STEP COMMAND (y/n)? y
INPUT THE SYNTAX, USING %1, %2.. AS ARGUMENTS >show cat
INPUT THE NUMBER OF ARGUMENTS >0

**

Save a file.

THE PROBABILITY IS 1.000000 FOR A SINGLE STEP SERVICE
ONE STEP COMMAND (y/n)? y
INPUT THE SYNTAX, USING %1, %2.. AS ARGUMENTS >save %1
INPUT THE NUMBER OF ARGUMENTS >1
INPUT THE DESCRIPTION OF ARGUMENT 1 >FILE NAME

**

Built in command for specifying source file during file
transportation.

THE PROBABILITY IS 1.000000 FOR A SINGLE STEP SERVICE
ONE STEP COMMAND (y/n)? y
INPUT THE SYNTAX, USING %1, %2.. AS ARGUMENTS >source %1
INPUT THE NUMBER OF ARGUMENTS >1
INPUT THE DESCRIPTION OF ARGUMENT 1 >SOURCE

**

FIGURE 18. The training phase of WYLBUR

www.manaraa.com

50

Create a file.

THE PROBABILITY is 1.000000 FOR A SINGLE STEP SERVICE
ONE STEP COMMAND (y/n)? n
INPUT THE SYNTAX, USING %1, %2.. AS ARGUMENTS >collect
INPUT THE NUMBER OF ARGUMENTS >0

**

Receive a file from the Unix system.

THE PROBABILITY IS 0.000000 FOR A SINGLE STEP SERVICE
ONE STEP COMMAND (y/n)? n

SUGGESTED COMMAND SEQUENCE 0:

FUNCTION : Built in command for specifying source file
transportation.

SYNTAX ; source

FUNCTION : Create a file.
SYNTAX : collect

FUNCTION : Save a
SYNTAX : save
INPUT THE SYNTAX,

FINISHED (y/n)?>n
INPUT THE SYNTAX,

FINISHED (y/n)?>n
INPUT THE SYNTAX,

FINISHED (y/n)?>y

TASK DESCRIPTION:
COMMAND SEQUENCE
source %1
collect
save %2
INPUT THE NUMBER OF ARGUMENTS>2
INPUT THE DESCRIPTION OF ARGUMENT 1>S0URCE
INPUT THE DESCRIPTION OF ARGUMENT 2>DESTINATI0N

file.

USING %1, %2.. AS ARGUMENTS >source %1

USING %1, %2.. AS ARGUMENTS >collect

USING %1, %2.. AS ARGUMENTS >save %2

Receive a file from the Unix system.

FIGURE 18. (continued)

www.manaraa.com

51

The Using Phase

The using phase is provided for general users, even

those who have little computer background, for serving them

like a human operator, taking care of all communication

procedures. A service table will be displayed to provide

the user with information about services currently available

through the operator, and the user only need to select a

service number to access a given utility.

The following sample dialog, shown in Figure 19,

illustrates the using phase of WYLBUR, in which a file is

transferred from Unix to Wylbur. Another example (Figure

20), shows the using phase of Unix. The user needs to

specify file names to indicate the source and destination

then the virtual operator will take over and transfer the

file as the user has requested.

www.manaraa.com

52

1; Wylbur
2: Vms
3: Unix
4: EXIT
INPUT SYSTEM ID>
1

1: Training Mode
2: Using Mode
3: EXIT
INPUT MODE NUMBER>
2
1 :Display file names.
2 iRetrieve a file to the active file.
3 ;List the content of the active file on screen.
4 :Delete a file.
5 :Save a file.
6 rPrint the active file to the output queue.
7 :Display the users currently logged on.
8 :Display the current date and time.
9 :Create a directory.
10 :Built in command for specifying source file

during file transportation.
11 :Create a file.
12 :Display a file on screen.
13 rPrint a file.
14 :Copy a file between same systems.
15 :Receive a file from the Unix system.

INPUT THE SERVICE NUMBER>15

COMMAND SYNTAX
source %1
collect
save %2

SEND COMMAND (y/n)?y
ARGUMENT 1 : SOURCE
INPUT>cpfl

ARGUMENT 2 ; DESTINATION
INPUT>sample

FIGURE 19. The using phase of WYLBUR

www.manaraa.com

53

ENTER SYSTEM ID:

Connecting to port 11A-BA003

Iowa State University Computation Center
User? nl.ycw
Password?
Account 16640?
Last logoff at 11:41 09/21/87
Last password change at 16:18 09/16/83 (1467 days ago)
Command> collect

1. > This is a sample file for testing the file
transportation.

2. > asdfghjklzxcvbnmqwertyuiop
3. > 1234567890
4. > !@#$%*_+-|-=*\{}<>?/:;"'
5. > ***

Command> save sample
SAMPLE saved on UCC005
Command> logout
GOOD BYE

**

1 :Display file names.
2 :Retrieve a file to the active file.
3 :List the content of the active file on screen,
4 zDelete a file.
5 :Save a file.
6 :Print the active file to the output queue.
7 :Display the users currently logged on.
8 zDisplay the current date and time.
9 :Create a directory.
10 : Built in command for specifying source file during

file transportation.
11 zCreate a file.
12 :Display a file on screen.
13 :Print a file.
14 :Copy a file between same systems.
15 :Receive a file from the Unix system.

INPUT THE SERVICE.NUMBER>

1: Training Mode
2: Using Mode
3: EXIT
INPUT MODE NUMBER>
3

FIGURE 19. (continued)

www.manaraa.com

1: Wylbur
2: Vms
3: Unix
4: EXIT
INPUT SYSTEM ID>
3

1: Training Mode
2: Using Mode
3; EXIT
INPUT MODE NUMBER>
2
1 :Display file names.
2 :Display a file on screen.
3 tDelete a file.
4 :Save a file.
5 :Rename a file.
6 ;Print a file.
7 :Display the users currently logged on.
8 :Display the current date and time.
9 :Create a directory.
10 :Create a file.
11 :Copy a file between same systems.
12 :Send a file by mail.
13 :Communicate other users on line.

INPUT THE SERVICE NUMBER>1

COMMAND SYNTAX
Is

SEND COMMAND (y/n)?y

SENDING COMMAND TO UNIX.
:w3
cal
compose
cpll

current
da7
funcf1
funds

functab
Ikb
lkb2
Ikbt

lp5
IsO
mal 6
mk8

mv4
phi 7
res
resdbs

rm2
senddbs
serv_no
syntax

**

FIGURE 20. The using phase of Unix

www.manaraa.com

55

1 :Display file names.
2 :Display a file on screen.
3 :Delete a file.
4 :Save a file.
5 :Rename a file.
6 iPrint a file.
7 :Display the users currently logged on.
8 :Display the current date and time.
9 :Create a directory.
10 :Create a file.
11 :Copy a file between same systems.
12 :Send a file by mail.
13 :Communicate other users on line.

INPUT THE SERVICE NUMBER>

1: Training Mode
2: Using Mode
3: EXIT
INPUT MODE NUMBER>
3

FIGURE 20. (continued)

www.manaraa.com

56

CONCLUSIONS

Due to the improvement of computer architecture, it has

become more and more feasible to apply artificial

intelligence (AI) techniques in building expert systems.

However, there are still too many problems in knowledge

representation and integration to effectively bridge over

the gap from human knowledge to machine intelligence.

How to transform human understanding in a certain area

to a machine-acceptable representation is a very general

problem. A principal difficulty resides in the difference

of memory structure between human being and machines. Human

intelligence is versatile, flexible, and free formed whereas

a machine is based on a specified, fixed and structured

construction. Moreover, the human brain is an incredibly

powerful computer, each neuron in which is connected to

thousands of others, making many human reactions virtually

effortless. It is almost impossible for conventional

sequential machines to simulate such sophisticated human

behavior, and this capability is very limited even using

modern techniques such as parallel processing in

multiprocessor machines. The problem of knowledge

representation becomes even more severe with increasing size

of an application domain. Therefore, the AI approach has

tended to be limited in application to more narrowly

www.manaraa.com

57

specified areas to reduce the complexity of knowledge

representation.

The virtual operator, motivated by practical needs for

interactivity between different computer systems, is a

research task that has challenged these acknowledged

limitations of using AI by applying AI techniques in a area

that seems to violate the previous principles of using AI

and to promise increased difficulty in implementation. In

previously described research, AI techniques have been

applied to a specified domain, and the goal has been to

produce a machine-based expert of relatively narrow scope to

perform a special task. The virtual operator research,

while still oriented toward implementing a special-purpose

expert system, enhances computer-to-computer interactivity

by building a system that can learn to communicate with

different systems. However the conceptual spirit is quite

different, since the goal is to communicate with different

systems, and to effectively share experiences among

different domains.

To learn to communicate with a particular system

represents narrowly specified knowledge, and to build a

virtual operator that can learn to communicate with

different systems actually expands this narrow learning to a

much more general domain. Many problems were encountered in

www.manaraa.com

58

achieving this result, the most difficult one being how to

efficiently use the experiences of communicating with one

system in achieving an effective communication process with

another system. Classifying knowledge in order to prevent

worthless knowledge integration is a more severe problem

than usually found in general AI research, because it is

usually assumed that AI strategies are applied within a

single specified domain, and accumulated knowledge is always

considered useful and could be used in formulation of

principles for that particular domain. This is not true if

the knowledge domain is not unique. The virtual operator

addresses the problems of using different domain knowledge

from different systems. Knowledge of commands, for example,

is found to be worthless in knowledge integration, since

there are no rules which can be abstracted from commands of

different systems.

A "learning by being told" technique has been adopted

in the training phase of the virtual operator to acquire

information about commands or command sequences used for

communicating with different systems. General heuristic

information and rules such as those command sequences are

separated from the knowledge of command syntax by separating

the knowledge base from the data base. Information about a

command itself, such as the description of arguments and the

www.manaraa.com

59

command syntax, is saved in the database and retrieved as

particular data in performing a certain task. Information

about the characteristics of a service, such as a

statistical survey about the varieties of command sequences

or the number of steps to complete the service in different

systems is saved in the knowledge base and used as heuristic

information to generate suggestions to help the virtual

operator in accepting a new system.

Learning processes are based on generalization and

specification iteration, which is implemented by further

classifying knowledge into local and global knowledge,

representing both special and general rules for handling

communication among different systems.

The virtual operator has been trained to communicate

with VAX/VMS, VAX/UNIX, and NAS9160/WYLBUR. In the using

mode, a user without significant computer background can use

those systems through the help of the virtual operator,

while in the training mode, a special user such as a person

with expertise on a particular computer system can teach the

virtual operator what he knows and thereby can install

knowledge in the virtual operator.

In addition to serving the user much like a real

operator, the virtual operator can also be used as a

machine-based tutor to teach a user to manipulate a system

www.manaraa.com

60

with which he is not familiar. In this case, a real

connection to a system may not be necessary, with only the

command or the command sequence being displayed to the user

according to the specified service description and the

destined system name.

The heuristic power of generating suggestions in the

training mode depends on how many systems the virtual

operator has previously been dealing with; the more systems

learned by the virtual operator the easier we train it to

accept another new system.

Satisfactory operation in the using mode of the virtual

operator also depends on the knowledge accumulated in its

"brain". Therefore, how it is trained significantly affects

overall performance. For a new service, the virtual

operator relies on the user to give the service description,

the argument description, and the command syntax. The

special user training the virtual operator can check

functions of new commands by trying them in a using mode,

then detect and correct incorrect commands, but a vague or

inappropriate description of a service function or its

argument can not be "noticed" by the virtual operator, which

may cause misunderstanding to the subsequent users.

The solution for this problem may depend on work in the

area of Natural Language Processing, in which the methods of

www.manaraa.com

61

understanding and analyzing human language are concerned. A

service classification routine might also be implemented to

generate a service directory to help users more easily in

locating their desired service.

In general, the research successfully introduced the

idea of knowledge classification and representation for a

problem related to different domains, leading to a step

toward pushing M strategies into a more general

application.

www.manaraa.com

62

BIBLIOGRAPHY

Charniak, Engene and McDermott, Drew. Introduction to
Artificial Intelligence. Addison-Wesley, Reading,
Mass., 1985.

Forsyth, R. "BEAGLE - A Darwinian Approach to Pattern
Recognition", Kybernetes, 10, No. 3 (1981):159-166.

Forsyth, R. "The Architecture of Expert Systems". In
Expert Systems, ed. R. Forsyth, pp. 9-17. Chapman and
Hall, New York, 1984.

Forysth, R. "The Anatomy of Expert Systems". In Artificial
Intelligence Principles and Applications, ed. M.
Yazdani, pp. 186-197. Chapman and Hall, New York,
1986.

Forsyth, R. and Rada, R. Machine Learning. Halsted Press,
New York, 1986.

Foxley, E. UNIX for Super-users. Addison-Wesley, Reading,
Mass., 1985.

Garey, M. and Johnson, D. Computers and Intractability. W.
H. Freeman, San Francisco, 1979.

Gevarter, William B. Intelligent Machines: An Introductory
Perspective of Artificial Intelligence and Robotics.
Prentice-Hall, Englewood Cliffs, NJ, 1985.

Grishman, R. and Hirschman, L. "Question Answering from
Natural Language Medical Data Bases". Artificial
Intelligence, 11, Nos. 1, 2 (1978);25-43.

Harmon, P. and King, D. EXPERT SYSTEMS: AI in Business. J.
Wiley, New York, 1985.

Hinton, Geoffrey E. "Learning in Parallel Networks". Byte,
10, No. 4 (1985):265-273.

Holland, J. Adaptation in Natural and Artificial Systems.
University of Michigan Press, Ann Arbor, Michigan,
1975.

Huang, K., Ghosh, J., and Chowkwanyum, R. "Computer
Architectures for Artificial Intelligence Processing".
Computer, 20, No. 1 (1987):19-27.

www.manaraa.com

63

Kelley, A, and Pohl, I. An Introduction to Programming in
C. Benjamin/Cummings Publishing Company, Menlo Park,
CA, 1984.

Kochan, S. UNIX Shell Programming. Hayden Book Company,
Hasbrouck Heights, NJ, 1986.

Lenat, D. "An Artificial Intelligence Approach to Discovery
in Mathematics as Heuristic Search". In Knowledge-
Base Systems in AI, ed. L. Lenat, pp. 229-491.
McGraw-Hill, New York, 1982a.

Lenat, D. "The Nature of Heuristics". Artificial
Intelligence, 19, No. 2 (1982b);189-249.

Meijer, A. and Peeters, P. Computer Network Architectures.
Computer Science Press, Rockville, Md., 1983.

Michalski, Ryszard S., Carbonell, Jaime G., and Mitchell,
Tom M. Machine Learning. Tioga Publishing Company,
Palo Alto, CA, 1983.

Michie, D. (ed.). Introductory Readings in Expert Systems.
Gordon and Breach, New York, 1982.

Minsky, M. and Papert, S. Perceptrons. MIT Press,
Cambridge, Mass., 1969.

Mitchell, T, "Generalization as Search", Artificial
Intelligence, 18, No. 2 (1982);203-226.

Naylor, C. Build Your Own Expert System; Halsted Press,
New York, 1985.

Newstead, M. A. and Pettipher, R. "Knowledge Acquisition
for Expert Systems". Electrical Communication, 60,
No. 2 (1986);115-121.

Nilsson, Nils J. Learning Machines. McGraw-Hill, Inc., New
York, 1965.

Nilsson, Nils J. Principles of Artificial Intelligence.
Tioga Publishing Company, Palo Alto, CA, 1980.

O'Bannon, R. Michael. "An Intelligent Aid to Assist
Knowledge Engineers with Interviewing Experts". In
IEEE Western Conference on Expert Systems, pp. 31-36.
Computer Society Press of the IEEE, Washington, D. C.,
1987.

www.manaraa.com

64

Rada, R. "Automating Knowledge Acquisition". In Expert
Systems: Principles and Case Studies, ed. R. Forsyth,
Chapman and Hall, New York, 1984.

Ramamoorthy, C. V., Shekhar, S., and Garg, V, "Software
Development Support for AI Programs". Computer, 20,
Mo. 1 (1987):30-40.

Ritchie, G. D. and Hanna, F. K. "AM: A Case Study in AI
Methodology". Artificial Intelligence, 23, No. 3
(1984):249-268.

Rochkind, Marc J, Advanced UNIX Programming. Prentice-Hall
Inc., Englewood Cliffs, NJ, 1985.

Rosenblatt, F. Principles of Neurodynamics. Spartan Books,
New York, 1962.

Simon, Herbert. "Why Should Machines Learn". In Machine
Learning, ed. T. Mitchell, pp. 25-38. Tioga Press,
Palo Alto, CA, 1983.

Sklansky, J. and Wassel, G. Pattern Classifiers and
Trainable Machines. Springer-Verlag, New York, 1981.

Smith, Stephen F. "Adaptive Learning Systems". In Expert
Systems: Principles and Case Studies, ed. R. Forsyth,
Chapman and Hall, New York, 1984.

Sobell, Mark G. A Practical Guide to UNIX System V.
Benjamin/Cummings Publishing Company, Menlo Park, CA,
1985.

Sunshine, Carl A. (ed.). Communication Protocol Modeling.
Artech House, Dedham, Mass., 1981.

Utgoff, Paul E. Machine Learning of Inductive Bias. Kluwer
Academic Publishers, Boston, 1986.

Waite, M., Martin, D., and Prata, S. UNIX primer Plus. H.
W. Sams, Indianapolis, Ind., 1983.

Waterman, D. A. "Generalization Learning Techniques for
Automating the Learning of Heuristics". Artificial
Intelligence, 1, Nos. 1, 2 (1970):121-170.

Weiss, S. and Kulikowski, C. A Practical Guide to Designing
Expert Systems. Rowman & Allanheld, Totowa, NJ, 1984.

www.manaraa.com

65

Winstom, Patrick, Artificial Intelligence. Second edition.
Addison-Wesley, Reading, Mass., 1984.

www.manaraa.com

66

ACKNOWLEDGEMENTS

For the encouragement, guidance, suggestions during the

course of investigation and in preparation of this

dissertation, I sincerely thank my major professor. Dr. T.

A, Smay.

To the other members of my graduate committee. Dr. D.

Grosvenor in the Department of Computer Science, Dr. Way Kuo

in the Department of Industrial Engineering, Dr. A. V. Pohm,

Dr. C. T. Wright, and Dr. C. S. Cornstook in the Department

of Electrical Engineering and Computer Engineering,

appreciation is extended for their favors granted.

www.manaraa.com

67

APPENDIX: BASIC PROGRAM MODULES

Part of the basic programs and functions are listéd.

Most parts of the programs are written in C language, except

that the system calls used in the program for the

transportation manager are special utilities from UNIX BSD

4.3, and the user interface program is written in Unix C

Shell.

The rest of the program can be accessed by contacting

the author in the Department of Electrical Engineering and

Computer Engineering, Iowa State University.

Structure and Variable Declarations

The database and the knowledge base are declared in

frame-like structures. The database is used to save the

command syntax and related descriptions, and the knowledge

base is used to save statistical information about the

implementation of a service in different systems. Other

defined constants and global variables are also included in

this program head.

www.manaraa.com

68

/## heuristic.struc ######################################/
#define GKBSIZE 100 /#Size of the global knowledge base #/
#define LKBSIZE
fdefine SQSIZE
#define HEURISIZE
#define GKBPATH

#define SYSDIR

fdefine MAXFAIL

#define NOSYS

50 /#Size of the local knowledge base
20 /# Max steps in a command sequence
5 /# Max number of suggestions
"/grad+guest/guest/wuyc/gkb"

/# Memory address for the global
knowledge base.

"/grad+guest/guest/wuyc/sys"
/# Memory address for the file

containing system names of all
the systems in GKB.

/# Information of suggested command sequences for a
particular service. #/

struct heuristic
{

int h_no; /# Heuristic suggestion ID #/
int weight; /# Weight of the suggestion #/
int steps; /# Number of steps in the command sequence
char sequence[SQSIZE]; /# Array of command sequences

};

struct kb
{

int
char
float

In­

struct kb2
{

int no_fail;
int tried_h;

};

struct cmd
{

#/
#/
#/

#/

#/

4 /# Max number of learning chances
before giving up. #/

3 /# Total Number of systems in GKB #/

#/
#/

/# A frame in the knowledge base #/

serv_no; /# Service ID
serv_name[80]; /# Service description
single; /# Number of systems that have completed

the service in a single command.
float multi; /# Number of systems that have completed

the service in a multi step command
sequence.

int no_heuristic; /# Number of suggestions

#/
#/

#/

#/
#/

struct heuristic h[HEURISIZE]; /# Heuristic suggestions #/

/# Failure counter #/
/# Number of used heuristic suggestions #/

/# Database for command information #/

www.manaraa.com

69

char filename[20]; /# Pile name of the command file #/
char descp[80]; /# Service description #/
int argc; /# Number of arguments #/
char argv[120]; /# Argument descriptions #/
int step; /# Number of steps #/
char syntax[120]; /# Command syntax or sequence #/

} ?

struct kb gkb[GKBSIZE], /# Global knowledge base #/
IkbÎLKBSIZE]; /# Local knowledge base #/

struct kb2 lkb2[LKBSIZE]; /# Secondary LKB #/

struct cmd db[LKBSIZE], /# Single command database #/
fcÎLKBSIZE]; /# Command sequence database #/

/# Implementation status variables #/
int new;
int complete;
int change;

int no_services; /# Number of services in GKB #/
int no_incomplete;/# Number of incomplete services in LKB #/
int no_unique; /# Number of special services in LKB #/

www.manaraa.com

70

Key Functions in the

Part of the functions used

center are listed as follows.

Heuristic Center

to implement the heuristic

www.manaraa.com

71

#include <stdio.h>
#include "heuristicjstruc"

char comd[LKBSIZE][80]; /# Table of existed command. #/
int no_cmd; /# Number of services in the local

service list.#/
int s_no[LKBSIZE]; /# Service ID. #/

/##/
match(k)
/# Compare the input command with commands in the command

table. If it is a new command, append it to the command
table, otherwise, return the service ID corresponding
to that existed command. #/

int k; /# The input command is in comd[k]. #/

int"i;
for (i=0; i <= LKBSIZE; ++i)

if (k == i) continue;
if (strncmp(comd[k],comd[i],strlen(comd[k])) == 0)

/# It is a existed command. The corresponding
service ID is returned. #/
return (i);

}

/# It is found to be a new command. #/
^ return (-1);

/##/
p_step(servno)
/# Calculate the probability of implementation

in one step. #/

int servno; /# Service ID #/

float i;

i = gkb[servno].single/
(gkb[servno].single+gkb[servno].multi);

printf("\nTHE PROBABILITY IS %f FOR A SINGLE STEP
SERVICEXn",i);

^ return;

www.manaraa.com

72

/##/
p_heuristic(servno)
/# Display the heuristic suggestions for the possible

command sequences. #/

int servno; /# Service ID #/

int i,j,k,c[5];
char *sq,s[5];
int a[5?,d[5],temp,n;

/# Find the entry of Ikb by its service number. #/
n = find_entry(servno);

/# Sort heuristic suggestions by their weight. #/
for (i = lkb2[nl.tried_h; i <= lkb[n].no_heuristic-l; ++i)

a[i] = lkb[n].h[i].weight;
^ d[i] = i;

for (i =lkb2[n], tried__h; i < lkb[n] ,no_heuristic-l; ++i)
for (j = lkb[n].no heuristic-1; i<j; —j)

if (a[j-l] < a[jT)

temp = a[j-l];
a[j-l] = a[j];
a[j] = temp;
temp = d[j-l];
d[j-l] = d[j];
^d[j] = temp;

/# Display the suggested command sequences. #/
for (j =lkb2[n].tried_h; j <= lkb[n].no_heuristic-l; ++j)

printf("\nSUGGESTED COMMAND SEQUENCE %d;\n",j);
sq = lkb[n].h[dCj]].sequence;
for (k =0; k <= lkb[n].h[d[j]].steps-1; ++k)

/# Decompose the filename into sequence numbers. #/
sscanf(sq,"%[*_]",s);
sq = sq + strlen(s) +1;
c[k] = atoi(s);
for (i = 0; i <=no_cmd; ++i)

if (c[k] == s_nô[i])
break;
printf("\nFUNCTION : %s\n",gkb[c[k]].serv_name);
printf("SYNTAX : %s\n",comd[i]);

}

www.manaraa.com

73

^return;

/##/
f i nd_ent ry(servno)

/# Find the entry to the local knowledge base with the
specified service ID. #/

int servno; /# Service ID #/

int j, n;

for (j = 0; j <= no_incomplete -1; ++j)
if (lkb[j].serv_no == servno)
n = j;
/# Corresponding entry to Ikb for the servno is n.#/

^return (n);

/##/
load_kb(s,pt)
/# Load the knowledge base from the secondary memory. #/

struct kb *s; /# Pointer to a frame of the KB. #/
FILE *pt; /# Memory address of the KB. #/

int i,j;

fscanf(pt,"%[*\n]",s->serv_name);
fscanf(pt,"\n%f%f%d\n",fii(s->single),&(s->multi),

&(s->no_heuristic));
for (j = 0; j <= s->no_heuristic -1; ++j)

fscanf (pt, "%d%d%d\n", Si(s->h[j] .h_no),&(s->h[j].weight),
&(s->h[j3.steps));

fscanf(pt,"%s",s->h[j].sequence);
^ fscanf(pt,"\n");

}

/##/
save_kb(s,pt)
/# Save the knowledge base back to the secondary memory, #/

struct kb *s;
FILE *pt;

int i,j,k;

www.manaraa.com

74

fprintf(pt,"%d\n",s->serv_no);
fprintf(pt,"%s",s->serv_nâme);
fprintf(pt,"\n%f %f %d\n",s->single,s->multif
s->no_heuristic);
for (j = 0; j <= s->no heuristic -1; ++j)
{

fprintf(pt,"%d %d %d\n",s->h[j].h_no,s->h[j].weight,
s->h[j].steps);
fprintf(pt,"%s",s->h[j].sequence);

^ fprintf(pt,"Nn");

^ return;

/##/
ass ign_kb(s,servno,servname,sg,m,nohu,stp,sq)
/# Initialize the information for a new service. #/

struct kb *s; /# Pointer to a frame of the KB. #/
int servno; /# Service ID #/
char servname[80];/# Description of the service. #/
float sg;

float m;

int nohu;

int stp;

char sq[20];

s->serv_no = servno;

/# If it is a single command service,
1 is assigned to sg. #/

/# If it is a multi command service,
1 is assigned to m. #/

/# If there is a heuristic suggestion,
1 is assigned to nohu. #/

/# The number of steps in the suggested
command sequence. #/

/# Command sequence #/

strcpy(s->serv_name,servname);
s->single = sg;
s->multi = m;
s->no_heuristic = nohu;
s->h[0].h_no = 0;
s->h[0].weight = 1;
s->h[0].steps = stp;
strcpy(s->h[0].sequence,sq);

return;

www.manaraa.com

75

/##/
update_kb(s,dt_sg,dt_m,stp,sq)
/# Update the information in the knowledge base. #/

struct kb *s;
int dt_sg; /# If it is a single step service,

1 is assigned as the increment. #/
int dt_m; /# If it is a multi step service,

1 is assigned as the increment. #/
int stp; /# The number of steps in the suggested

command sequence. #/
char sq[20];

int i;

s->single = s->single + dt_sg;
s->multi = s->multi + dt_m;
if (dt_sg >0) ""
return; /# It is a single step service. #/

/# If any command in sequence is "unique",
stop the knowledge generalization.#/

for (i = 0; i <= strlen(sq)-l; ++i)
if (sq[i] ==) return;

/# Update command sequence information. #/
for (i = 0; i <= s->no_heuristic -1; ++i)

if (strcmp(s->h[i].sequence,sq) == 0)

/# Old heuristic succeeded again. #/
s->h[i].weight++; /# Evaluation function using

the most successful criteria. #/
^ return;

/# New heuristic added. #/
s->no_heuristic++;
s->h[s->no_heuristic-l].h_no = s->no_heuristic -1;
s->h[s->no_heuristic-l].weight = 1; ~
s->h[s->no_heuristic-l].steps = stp;
strcpy(s->h[s->no_heuristic-l].sequence,sq);

return;

www.manaraa.com

76

/##/
update_new(sys,servno)
/# Set the corresponding bit in the status variable "NEW

of each system that is not under training. This function
is called when a new service is added to the GKB. #/

int servno; /# Service ID #/
char sys[5][80]; /# Systems that are not under training. #/

FILE *pt, *update_pt;
int new, complete, change; /# Implementation status

variables. #/
int p; /# Bit mask #/
int k;

P = 1;
for (k =0; k <= NOSYS-2; ++k) /# Total number of
^ systems in GKB is NOSYS. #/

update_pt = fopen(sys+k,"r");
fscanf(update_pt,"%d%d%d",&new,&complete,&change);
fclose(update_pt);
new = new|(p << servno); /# Set the corresponding bit

in the variable "NEW. #/
update_pt = fopen(sys+k,"w");
fprintf (update_jpt, "%d %d %d" ,new,complete,change) ;
fclose(update_pt);

}

/##/
update_change(sys,servno)
/# Set the corresponding bit in the status variable

"CHANGE" of each system that is not under training.
This function is called when the information of a service
in the GKB is changed, #/

int servno;
char sys[5][80];

{
FILE *pt,*update_pt;
int new, complete, change;
int p;
int k;

P =1;
for (k = 0; k <= NOSYS-2; ++k)

update_pt = fopen(sys+k,"r");

www.manaraa.com

77

fscanf(update_pt,"%d%d%d",Gnew,&complete,&change);
fclose(update_pt);
change = change|(p « servno); /# Set the corresponding

bit in "CHANGE". #/
update__pt = fopen(sys+k,"w");
fprintf(update_pt,"%d %d %d",new,complete,change);
fclose(update_pt);

}

/##/
f i nd_other_sys t ems(a)
/#Find the systems that are not currently under training. #/

char a[5][80];

FILE *pl, *p2;
int i;
char current[80], /#Name of the system under training. #/

b[80];

pi = fopenC'current", "r") ;
fscanf(pi,"%s",current);
fclose(pi);

p2 = fopen(SYSDIR,"r"); /# All the system names of the
systems in GKB are kept in
SYSDIR. #/

i = 0;
while(fgets(b,80,p2) != NULL)

if (strncmp(b,current,strlen(current)-l) == 0) continue;
strncpy(a[i],b,strlen(b)-l);
strcat(a[i],"/update");

}i++,

fclose(p2);

^ return;

www.manaraa.com

78

Basic Parts in the Transportation Manager

The transmitter and receiver are implemented by using

the concept of UNIX processes, which can be generated

simultaneously to simulate the concurrent situation.

The READY signal is transmitted from the receiver to

the transmitter through the pipe, which is also created by

the special UNIX system call "pipe" for interprocess

communication.

www.manaraa.com

79

/##/
/# Create a pipe to link the TRANSMITTER and RECEIVER. #/

if (pipe(pfd) == -1) {
printf("Nnpipe can not be createdXn");
^exit(l);

/##/
switch(pid=fork()) {

case 0: /# Child process #/
/# RECEIVER #/
i = 0;
j = 0;
while(read(csout,Sid[i],l)) /# Read a byte from the
^ connected system. #/

write(l,&d[i],l);
if ((d[i] == '?') II (d[i] == •>•)) {
/# System prompt is received. #/
if (j <= final) {
/# Continue transmission #/

if(strncmp(&d[l],rp[j],strlen(rp[j])-l) == 0)
/# Expected response received, send the sequence

number as the READY signal to TRANSMITTER. #/
write(pfd[l],&j,l);

else
/# Unexpected response received, send error

signal to TRANSMITTER. #/

j = WRONG;
write(pfd[l],&j,1);

'
}
if (d[il == 'CM') {

write(resbf,d,i+1);
i = -1;

i =(i+l) % RBF_SIZE;

/##/
default; /# Parent process #/

/# TRANSMITTER #/
while(l)
{

read(pfd[0],&s_ready,l); /# Wait the READY signal. #/

www.manaraa.com

80

if (s„ready == WRONG)
/# Error signal is received. #/

break;

sleep(l); /# Time is required for next transmission.

if (file transfer)
{
cp__pt = fopen(cpf 1, "r") ;
while(fgets(b,80,cp_pt) != NULL)

b[strlen(b) -1] = '4M';
write(csout,b,strlen(b));

^sleep(l);

^write(csout,"*C",l);

s t rncpy(b,sp[s_ready],s t r1en(sp[s_ready])-!);
b[strlen(spts_readyj)-l] = 'CM';
write(csout,b,strlen(sp[s_ready]));
if (s_ready == final) break;

kill(pid,9); /# Terminated the child process #/
quitO;
return;

www.manaraa.com

81

User

This is an application

in which a service table is

specifying an object system

Interface

program written in Unix C Shell,

displayed to help the user in

and selecting operation modes.

www.manaraa.com

82

/# Display the systems available. #/
while (1 == 1)

echo " "
echo "1: Wylbur"
echo "2: Vms"
echo "3; Unix"
echo "4: EXIT"
echo 'INPUT SYSTEM ID>'
set sys = Chead -1*

switch ($sys)
/# Move to the specified directory according

to the specified system. #/
case 1:

cd wyldir
breaksw

case 2:
cd vaxdir
breaksw

case 3:
cd unixdir
breaksw

case 4:
break;

endsw

while (1 == 1)
/# Display the operation modes. #/
echo " "
echo "1; Training Mode"
echo "2: Using Mode"
echo "3: EXIT"
echo "INPUT MODE NUMBER>"
set mode = Chead -IC
switch ($mode)

case 1:
setup /# Training mode #/
breaksw

case 2:
use2 $sys /# Using mode #/
breaksw

case 3:
break

endsw
end
cd ..

end

	1988
	A virtual operator technique for enhancement of computer-to-computer interactivity
	Ying-Chan Fred Wu
	Recommended Citation

	tmp.1416277000.pdf.G5kPN

